Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Zero-valent metal (ZVMs)-based persulfate activation systems are extensively applied for the elimination of organic pollutants in aqueous environments. In this study, for the first time, zero-valent copper (ZVC) was employed as the peroxymonosulfate (PMS) activator for the efficient degradation of Orange G (OG). The physicochemical properties of ZVC were systematically characterized by FESEM, EDX, TEM, XRD and XPS measurements. Furthermore, the effects of catalyst loading, PMS dosage, OG concentration and inorganic anions on the ZVC/PMS system were, respectively, investigated and explicated. The formation of OH and SO4•− in the system was verified by quenching experiments and then the possible reaction mechanism was proposed. This work can provide insight into water treatment technology based on ZVMs.

Details

Title
Zero-Valent Copper-Mediated Peroxymonosulfate Activation for Efficient Degradation of Azo Dye Orange G
Author
Bowen, Yu 1 ; Li, Zhijun 1 ; Zhang, Silu 1 

 School of Hydraulic and Electric Power, Heilongjiang University, Harbin 150080, China; [email protected] (B.Y.); [email protected] (S.Z.); Institute of Frigid Zone Groundwater, Heilongjiang University, Harbin 150080, China 
First page
700
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693974860
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.