Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Low oxygen level is a phenomenon often occurring during the cucumber cultivation period. Genes involved in adaptations to stress can be regulated by non-coding RNA. The aim was the identification of long non-coding RNAs (lncRNAs) involved in the response to long-term waterlogging stress in two cucumber haploid lines, i.e., DH2 (waterlogging tolerant—WL-T) and DH4 (waterlogging sensitive—WL-S). Plants, at the juvenile stage, were waterlogged for 7 days (non-primed, 1xH), and after a 14-day recovery period, plants were stressed again for another 7 days (primed, 2xH). Roots were collected for high-throughput RNA sequencing. Implementation of the bioinformatic pipeline made it possible to determine specific lncRNAs for non-primed and primed plants of both accessions, highlighting differential responses to hypoxia stress. In total, 3738 lncRNA molecules were identified. The highest number (1476) of unique lncRNAs was determined for non-primed WL-S plants. Seventy-one lncRNAs were depicted as potentially being involved in acquiring tolerance to hypoxia in cucumber. Understanding the mechanism of gene regulation under long-term waterlogging by lncRNAs and their interactions with miRNAs provides sufficient information in terms of adaptation to the oxygen deprivation in cucumber. To the best of our knowledge, this is the first report concerning the role of lncRNAs in the regulation of long-term waterlogging tolerance by priming application in cucumber.

Details

Title
Waterlogging-Stress-Responsive LncRNAs, Their Regulatory Relationships with miRNAs and Target Genes in Cucumber (Cucumis sativus L.)
Author
Kęska, Kinga 1   VIAFID ORCID Logo  ; Michał Wojciech Szcześniak 2 ; Adamus, Adela 1 ; Czernicka, Małgorzata 1   VIAFID ORCID Logo 

 Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland; [email protected] 
 Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; [email protected] 
First page
8197
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2558835686
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.