It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Water is literally the stuff of life. A clear understanding of present and future sources of water and of strategies for the effective management of water resources is in the interest of every country. The challenge is urgent because human population demands, as well as climate change, make once secure sources uncertain. Moreover, water projects are often large and expensive and take many years to complete, so future planning is crucial. For any one person, the ecological environment is very important, it can provide for human survival and development of material basis and the necessary variety of other conditions. Inappropriate if the ecological environment, human beings can not survive and develop. We can say that human existence and development, are dependent on a suitable environment. One element of singularity of place that remains is time (and history) manifest through architecture and the constructed environment. Two views of both cities-crosssectional and plan-reveal very different urban morphologies. The theory is that if the pre-development distribution of instream flows is maintained, then the baseline capacity to transport sediment, a proxy for the geomorphic condition, will be maintained as well. A popular method of mimicking the pre-development flow regime is via flow duration control (FDC). As it turns out, storage requirements for flow duration control tend to be much larger than that for surface water treatment requirements, particularly when the storm water facilities are small, distributed facilities with simple outlet structures, such as those designed for Low Impact Development (LID) Low-impact development (LID) methods can cost less to install, have lower operations and maintenance (O&M) costs, and provide more cost-effective storm water management and water-quality services than conventional storm water controls. LID also provides ecosystem services and associated economic benefits that conventional storm water controls do not.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Urbanism Research Group, Architecture and Urban Planning Department, Iran University of Science and Technology, Tehran, Iran
2 Post-disaster Reconstruction Research Group, Architecture and Urban Planning Department, Shahid Beheshti University, Tehran, Iran
3 Geography and Urban Planning, Geography Research Group, Faculty of Literature, Humanities and Social Sciences, Islamic Azad University of Science Research, Tehran, Iran