Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

When building a map of a dynamic environment, simultaneous localization and mapping systems have problems such as poor robustness and inaccurate pose estimation. This paper proposes a new mapping method based on the ORB-SLAM2 algorithm combined with the YOLOv5 network. First, the YOLOv5 network of the tracing thread is used to detect dynamic objects of each frame, and to get keyframes with detection of dynamic information. Second, the dynamic objects of each image frame are detected using the YOLOv5 network, and the detected dynamic points are rejected. Finally, the global map is constructed using the keyframes after eliminating the highly dynamic objects. The test results using the TUM dataset show that when the map is constructed in a dynamic environment, compared with the ORB-SLAM2 algorithm, the absolute trajectory error of our algorithm is reduced by 97.8%, and the relative positional error is reduced by 59.7%. The average time consumed to track each image frame is improved by 94.7% compared to DynaSLAM. In terms of algorithmic real-time performance, this paper’s algorithm is significantly better than the comparable dynamic SLAM map-building algorithm DynaSLAM.

Details

Title
Visual SLAM Mapping Based on YOLOv5 in Dynamic Scenes
Author
Zhang, Xinguang; Zhang, Ruidong; Wang, Xiankun
First page
11548
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2739418828
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.