Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Signal identification is of great interest for various applications such as spectrum sharing and interference management. A typical signal identification system can be divided into two steps. A feature vector is first extracted from the received signal, then a decision is made by a classification algorithm according to its observed values. Some existing techniques show good performance but they are either sensitive to noise level or have high computational complexity. In this paper, a machine learning algorithm is proposed for the identification of vehicular communication signals. The feature vector is made up of Instantaneous Frequency (IF) resulting from time–frequency (TF) analysis. Its dimension is then reduced using the Singular Value Decomposition (SVD) technique, before being fed into a Random Forest classifier. Simulation results show the relevance and the low complexity of IF features compared to existing cyclostationarity-based ones. Furthermore, we found that the same accuracy can be maintained regardless of the noise level. The proposed framework thus provides a more accurate, robust and less complex V2X signal identification system.

Details

Title
V2X Wireless Technology Identification Using Time–Frequency Analysis and Random Forest Classifier
Author
Elbahhar, Fouzia  VIAFID ORCID Logo 
First page
4286
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549681380
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.