Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

There are various potential practical uses of fairy chemicals (FCs) in the fields of agriculture, cosmetics, and medicine; however, the production costs of FCs are very high. To enable the practical use of FCs, more efficient and inexpensive methods of culturing the mycelia of FCs-producing fungi and producing FCs need to be developed. The purpose of the present study was to determine methods of reducing the production costs of FCs and mycelia of the FCs-producing fungus Lepista sordida. We investigated the effects of four food industrial by-products, i.e., corn steep liquor (CSL), rice bran, wheat bran, and Japanese liquor lees, as nutritional additives in the liquid culture medium of the fungus. We found that CSL was more effective than the other tested additives in increasing the production of FCs and mycelia. Medium containing 1% CSL was optimal for increasing the mycelial yield while medium containing 6% CSL was optimal for increasing the production of FCs. The reason for this difference in the optimal CSL concentration was considered to be related to the stress on the mycelia caused by the amount of nutrients in the liquid medium. These results are expected to facilitate the practical use of FCs and the mycelia of FCs-producing fungi.

Details

Title
Utilization of Corn Steep Liquor for the Production of Fairy Chemicals by Lepista sordida Mycelia
Author
Kobori, Hajime 1 ; Wu, Jing 2 ; Takemura, Hirohide 3 ; Choi, Jae-Hoon 4   VIAFID ORCID Logo  ; Tada, Naoto 5 ; Kawagishi, Hirokazu 2 

 Iwade Research Institute of Mycology Co., Ltd., 1-9 Suehiro, Tsu 514-0012, Japan; Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan 
 Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan 
 Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan 
 Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan 
 Iwade Research Institute of Mycology Co., Ltd., 1-9 Suehiro, Tsu 514-0012, Japan 
First page
1269
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2309608X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756722955
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.