Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Among the polymeric family, high-temperature-vulcanized silicone rubber (HTV-SR) is the most deployed material for high voltage insulation applications. However, in an outdoor environment, due to contamination and wetting-induced dry band arcing, consequently SR experiences surface tracking and erosion. From a practical standpoint, the tracking and erosion performance under multi-stress aging is required to be known. It is in that context that the present study was undertaken to measure and analyze the effect of multi-stress aging on tracking and erosion performance. Composite samples of SR having different filler concentrations of silica and alumina trihydroxide (ATH) were aged in a multi-stress chamber for a period of 5000 h, and after that their electrical tracking performance was studied. Simultaneously, unaged samples were also exposed to tracking test for comparison. To conduct this test, the inclined plane testing technique was used in accordance with IEC-60587. All samples exposed to tracking test were analyzed using different diagnostic and measuring techniques involving surface leakage current measurement, Fourier transform infrared spectroscopy (FTIR), thermal stability and hydrophobicity classification. Experimental results shown that the tracking lifetime increased through incorporation of silica and ATH fillers in the SR. Amongst all test samples, two samples designated as filled with 2% nano silica and 20% micro silica/ATH exhibited greater resistance to tracking. This was attributed to the optimum loading as well as better dispersion of the fillers in the polymer matrix. The presence of nano-silica enhanced time-to-tracking failure, owing to both improved thermal stability and enhanced shielding effect on the surface of nanocomposite insulators.

Details

Title
Understanding Variations in the Tracking and Erosion Performance of HTV-SR-Based Composites due to AC-Stressed Aging
Author
Ullah, Rahmat 1   VIAFID ORCID Logo  ; Akbar, Muhammad 1 ; Ullah, Nasim 2   VIAFID ORCID Logo  ; Sattam Al Otaibi 2 ; Althobaiti, Ahmed 2 

 Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Science and Technology, Topi 23640, Pakistan; [email protected] 
 Department of Electrical Engineering, Taif University, Taif 26571, Saudi Arabia; [email protected] (N.U.); [email protected] (S.A.O.); [email protected] (A.A.) 
First page
3634
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596045380
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.