Full Text

Turn on search term navigation

Copyright © 2015 Kalyani Kathirgamanathan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this study two-dimensional FTIR analysis was applied to understand the temperature effects on processing cellulose solutions in imidazolium-based ionic liquids. Analysis of the imidazolium ion νC2-H peak revealed hydrogen bonding within cellulose solutions to be dynamic on heating and cooling. The extent of hydrogen bonding was stronger on heating, consistent with greater ion mobility at higher temperature when the ionic liquid network structure is broken. At ambient temperatures a blue shifted νC2-H peak was indicative of greater cation-anion interactions, consistent with the ionic liquid network structure. Both cellulose and water further impact the extent of hydrogen bonding in these solutions. The FTIR spectral changes appeared gradual with temperature and contrast shear induced rheology changes which were observed on heating above 70°C and cooling below 40°C. The influence of cellulose on solution viscosity was not distinguished on initial heating as the ionic liquid network structure dominates rheology behaviour. On cooling, the quantity of cellulose has a greater influence on solution rheology. Outcomes suggest processing cellulose in ionic liquids above 40°C and to reduce the impacts of cation-anion effects and enhance solubilisation, processing should be done at 70°C.

Details

Title
Two-Dimensional FTIR as a Tool to Study the Chemical Interactions within Cellulose-Ionic Liquid Solutions
Author
Kathirgamanathan, Kalyani; Grigsby, Warren J; Al-Hakkak, Jafar; Edmonds, Neil R
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
16879422
e-ISSN
16879430
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1733093076
Copyright
Copyright © 2015 Kalyani Kathirgamanathan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.