Full Text

Turn on search term navigation

© Rosario et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Despite their distinct biology, granulosa cell tumours (GCTs) are treated the same as other ovarian tumours. Intriguingly, a recurring somatic mutation in the transcription factor Forkhead Box L2 (FOXL2) 402C>G has been found in nearly all GCTs examined. This investigation aims to identify the pathogenicity of mutant FOXL2 by studying its altered transcriptional targets.

Methods

The expression of mutant FOXL2 was reduced in the GCT cell line KGN, and wildtype and mutant FOXL2 were overexpressed in the GCT cell line COV434. Total RNA was hybridised to Affymetrix U133 Plus 2 microarrays. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2.

Results

The overexpression of wildtype and mutant FOXL2 in COV434, and the silencing of mutant FOXL2 expression in KGN, has shown that mutant FOXL2 is able to differentially regulate the expression of many genes, including two well known FOXL2 targets, StAR and CYP19A. We have shown that many of the genes regulated by mutant FOXL2 are clustered into functional annotations of cell death, proliferation, and tumourigenesis. Furthermore, TGF-β signalling was found to be enriched when using the gene annotation tools GATHER and GeneSetDB. This enrichment was still significant after performing a robust permutation analysis.

Conclusion

Given that many of the transcriptional targets of mutant FOXL2 are known TGF-β signalling genes, we suggest that deregulation of this key antiproliferative pathway is one way mutant FOXL2 contributes to the pathogenesis of adult-type GCTs. We believe this pathway should be a target for future therapeutic interventions, if outcomes for women with GCTs are to improve.

Details

Title
The Transcriptional Targets of Mutant FOXL2 in Granulosa Cell Tumours
Author
Rosario, Roseanne; Araki, Hiromitsu; Print, Cristin G; Shelling, Andrew N
First page
e46270
Section
Research Article
Publication year
2012
Publication date
Sep 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1326553060
Copyright
© Rosario et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.