Full Text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Anomalous deviations from the Beer-Lambert law have been observed for a long time in a wide range of application. Despite all the attempts, a reliable and accepted model has not been provided so far. In addition, in some cases the attenuation of radiation seems to follow a hyperbolic more than an exponential extinction law. Starting from a probabilistic interpretation of the Beer-Lambert law based on Poissonian distribution of extinction events, in this paper we consider deviations from the classical exponential extinction introducing a weighted version of the classical law. The generalized law is able to account for both sub or super-exponential extinction of radiation, and can be extended to the case of inhomogeneous media. Focusing on this case, we consider a generalized Beer-Lambert law based on an inhomogeneous weighted Poisson distribution involving a Mittag-Leffler function, and show how it can be directly related to hyperbolic decay laws observed in some applications particularly relevant to microbiology and pharmacology.

Details

Title
Towards a Generalized Beer-Lambert Law
Author
Casasanta, Giampietro; Garra, Roberto
Publication year
2018
Publication date
Mar 2018
Publisher
MDPI AG
e-ISSN
25043110
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2124608684
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.