Full Text

Turn on search term navigation

Copyright © 2010 A.-R. A. Khaled et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Exponential fins are mathematically analyzed in this paper. Two types are considered: (i) straight exponential fins and (ii) pin exponential fins. The possibility of having increasing or decreasing cross-sectional areas is considered. Different thermal performance indicators are derived. The maximum ratio between the thermal efficiency of the exponential straight fin to that of the rectangular fin is found to be 1.58 at an effective thermal length of 2.0. This ratio is even larger when exponential fins are compared with triangular and parabolic straight fins. Moreover, the maximum ratio between the thermal efficiency of the exponential pin fin to that of the rectangular pin fin is found to be 1.17 at an effective thermal length of 1.5. However, exponential pin fins thermal efficiencies are found to be lower than those of triangular and parabolic pin fins. Moreover, exponential joint-fins may transfer more heat than rectangular joint-fins especially when differences between their senders and receivers portions dimensionless indices are very large. Finally, it is found that increasing the joint-fin exponential index may cause straight exponential joint-fins to transfer more heat than rectangular joint-fins.

Details

Title
Thermal Characterizations of Exponential Fin Systems
Author
A.-R. A. Khaled
Publication year
2010
Publication date
2010
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
856084383
Copyright
Copyright © 2010 A.-R. A. Khaled et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.