Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fluorophores with aggregation-induced emission enhancement (AIEE) properties have attracted increasing interest in recent years. On the basis of our previous research, we successfully designed and synthesized eleven chalcones. Through an optical performance experiment, we confirmed that compounds 16 had obvious AIEE properties. As these AIEE molecules had excellent fluorescence properties and a large Stokes shift, we studied their application in living cell imaging, and the results showed that these compounds had low cytotoxicity and good biocompatibility at the experimental concentrations. More importantly, they could specifically label mitochondria. Subsequently, we selected zebrafish as experimental animals to explore the possibilities of these compounds in animal imaging. The fluorescence imaging of zebrafish showed that these AIEE molecules can enter the embryo and can be targeted to aggregate in the digestive tract, which provides a strong foundation for their practical application in the field of biological imaging. Compared with traditional fluorophores, these AIEE molecules have the advantages of possessing a small molecular weight and high flexibility. Therefore, they have excellent application prospects in the field of biological imaging. In addition, the findings of this study have very positive practical significance for the discovery of more AIEE molecules.

Details

Title
Synthesis of New AIEE-Active Chalcones for Imaging of Mitochondria in Living Cells and Zebrafish In Vivo
Author
Luo, Huiqing 1 ; Li, Na 1 ; Liu, Liyan 1 ; Wang, Huaqiao 2 ; He, Feng 1   VIAFID ORCID Logo 

 School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China; [email protected] (H.L.); [email protected] (N.L.); [email protected] (L.L.) 
 Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510006, China; [email protected] 
First page
8949
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2624485527
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.