Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, a beat-based autoencoder is proposed for mapping photoplethysmography (PPG) to a single-lead electrocardiogram (single-lead ECG) signal. The main limiting factors represented in uncleaned data, subject dependency, and erroneous beat segmentation are regarded. The dataset is cleaned by a two-stage clustering approach. Rather than complete single–lead ECG signal reconstruction, a beat-based PPG-to-single-lead-ECG (PPG2ECG) conversion is introduced for providing a simple lightweight model that meets the computational capabilities of wearable devices. In addition, peak-to-peak segmentation is employed for alleviating errors in PPG onset detection. Furthermore, subject-dependent training is highlighted as a critical factor in training procedures because most existing work includes different beats/signals from the same subject’s record in both training and testing sets. So, we provide a completely subject-independent model where the testing subjects’ records are hidden in the training stage entirely, i.e., a subject record appears once either in the training or testing set, but testing beats/signals belong to records that never appear in the training set. The proposed deep learning model is designed for providing efficient feature extraction that attains high reconstruction quality over subject-independent scenarios. The achieved performance is about 0.92 for the correlation coefficient and 0.0086 for the mean square error for the dataset extracted/cleaned from the MIMIC II dataset.

Details

Title
Subject-Independent per Beat PPG to Single-Lead ECG Mapping
Author
Abdelgaber, Khaled M 1   VIAFID ORCID Logo  ; Mostafa Salah 1 ; Omer, Osama A 2   VIAFID ORCID Logo  ; Farghal, Ahmed E A 1   VIAFID ORCID Logo  ; Mubarak, Ahmed S 2   VIAFID ORCID Logo 

 Department of Electrical Engineering, Faculty of Engineering, Sohag University, Sohag 82524, Egypt; [email protected] (M.S.); [email protected] (A.E.A.F.) 
 Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt; [email protected] (O.A.O.); [email protected] (A.S.M.) 
First page
377
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843065930
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.