Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effect of different In contents on the melting characteristics, mechanical properties, and microstructure of 12Ag–Cu–Zn–Sn filler metal was investigated in this paper, and flame brazing of 304 stainless steel and copper plates was done using the 12Ag–Cu–Zn–Sn–xIn filler metal. The results indicate that adding appropriate amount of In can evidently decrease the solidus and liquidus temperatures and improve the wettability of the low silver based filler metals. In addition, the shear strength of 304 stainless steel and copper plates joint brazed by 12Ag–Cu–Zn–Sn–1In are satisfactory due to the solution strength effect, and scanning electron microscopy examination of the braze-zone revealed that more relatively sound joints were obtained when brazing was done with 12Ag–Cu–Zn–Sn–xIn filler metal than with Indium free one; its performance is comparable to that of the joint brazed with the 20Ag–Cu–Zn–Sn filler metal, having a remarkable silver-saving effect.

Details

Title
Study on Microstructure and Properties of 12Ag–Cu–Zn–Sn Cadmium-Free Filler Metals with Trace in Addition
Author
Wu, Jie 1 ; Xue, Songbai 1   VIAFID ORCID Logo  ; Yao, Zhen 1   VIAFID ORCID Logo  ; Long, Weimin 2 

 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; [email protected] (J.W.); [email protected] (Z.Y.) 
 State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001, China; [email protected] 
First page
557
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532317939
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.