Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We present a novel stereo visual odometry (VO) model that utilizes both optical flow and depth information. While some existing monocular VO methods demonstrate superior performance, they require extra frames or information to initialize the model in order to obtain absolute scale, and they do not take into account moving objects. To address these issues, we have combined optical flow and depth information to estimate ego-motion and proposed a framework for stereo VO using deep neural networks. The model simultaneously generates optical flow and depth information outputs from sequential stereo RGB image pairs, which are then fed into the pose estimation network to achieve final motion estimation. Our experiments have demonstrated that our combination of optical flow and depth information improves the accuracy of camera pose estimation. Our method outperforms existing learning-based and monocular geometry-based methods on the KITTI odometry dataset. Furthermore, we have achieved real-time performance, making our method both effective and efficient.

Details

Title
StereoVO: Learning Stereo Visual Odometry Approach Based on Optical Flow and Depth Information
Author
Duan, Chao 1 ; Junginger, Steffen 2 ; Thurow, Kerstin 3   VIAFID ORCID Logo  ; Liu, Hui 1 

 Institute of Artificial Intelligence & Robotics (IAIR), School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China 
 Institute of Automation, University of Rostock, 18119 Rostock, Germany 
 Center for Life Science Automation, University of Rostock, 18119 Rostock, Germany 
First page
5842
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819329432
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.