Content area
Full Text
ABSTRACT
A standardized method to determine cooked spaghetti firmness was developed. The effects of process and instrument variables were investigated and optimized to provide reproducible results between laboratories and to enable discrimination among samples with similar firmness characteristics. Commercial spaghetti samples of varying thickness were chosen to artificially create a range in firmness, and used to investigate the effect of a wide range of variables on cooked spaghetti firmness including sample preparation, cooking procedure, postcooking treatment, sample presentation, and instrument settings. Cooked spaghetti firmness determined using a TA-XT2i texture analyzer was significantly affected by optimum cook time, postcook cooling, rest time, and crosshead speed (P < 0.001), as well as strand length, spaghetti to cooking water ratio, number of strands cut, and strand position (P < 0.05). Although previous work showed a reasonable correlation between laboratories when using in-house methods (r = 0.85), the correlation improved to r = 0.96 when using the standardized method to analyze 29 commercially produced spaghetti samples. The Spearman rank correlation increased from rs = 0.81 to r^sub s^ = 0.95, prestandardization and poststandardization, indicating greater agreement between laboratories in sample ranking.
Cereal Chem. 85(3):440-444
Pasta is a popular food because of its sensory appeal, versatility, low cost, ease of preparation, excellent dried storage stability, and strong nutritional image. Sensory appeal is determined by appearance, texture, and flavor (Bourne 2002). Of these three, textural properties of pasta have received more research effort because of its importance to consumer acceptance (Cole 1991; D'Egidio and Nardi 1996). Sensory analysis using highly trained panelists is considered the ultimate tool for measurement of the cooking quality of pasta products (Matsuo 1988). An internationally recognized standard sensory method for pasta, however, is not adhered to, most likely because of the influence of local preferences on sensory parameters. In addition, sensory evaluation is time consuming and impractical when sample size is limited. In response to these constraints, various instruments have been developed to evaluate the texture of pasta and have been reviewed extensively (Cole 1991). One of the more popular and commonly used methods is measuring the degree of compression of cooked spaghetti strands using universal testing machines like the Instron (Approved Method 66-50, AACC International 2000), Lloyd, LFRA, tensipresser, and TA.XT2i' texture analyzers...