Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The cavities or lava tubes in the Galapagos Islands were formed by the differential cooling of the basaltic flow of the volcanoes surrounding these islands. In this article, a stability analysis was carried out to determine the degree of safety of different lava tubes using three methods: two empirical ones based on geomechanical classifications and one strain–strain (Hoek–Brown failure criterion). The methodology used consisted of the following phases: (i) compilation of information based on existing geomechanical mapping; (ii) geomechanical classification of the rock mass using Barton’s Q index and rock mass rating; (iii) steady state qualification using the geotechnical index of cavities (GCI); (iv) numerical modeling applying the Hoek–Brown criterion; (v) comparison of methodology and discussion of the results. The data obtained indicate that the methodologies used to evaluate the stability of the lava tubes have high reliability since they allowed the characterization of the different lava tubes. As the final “product” of the investigation, a graph was drawn up in which the empirical observations and the safety factors obtained with the numerical analysis (stress–strain) were superimposed, classifying the lava tubes as stable and non-stable. It can be concluded that the characterization methodologies used in this article can be applied to similar cases and fill a gap in rapid preliminary analyses of the degree of stability and risk of cave collapse.

Details

Title
Stability Analysis of Lava Tunnels on Santa Cruz Island (Galapagos Islands, Ecuador) Using Rock Mass Classifications: Empirical Approach and Numerical Modeling
Author
Bastidas, Gilmar 1 ; Soria, Oliver 1 ; Mulas, Maurizio 1   VIAFID ORCID Logo  ; Loaiza, Silvia 1 ; Luis Jordá Bordehore 2   VIAFID ORCID Logo 

 Escuela Superior Politecnica del Litoral, ESPOL, Faculty of Engineering in Earth Sciences FICT, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL Polytechnic University, Guayaquil P.O. Box 09-01-5863, Ecuador 
 Departamento de Ingeniería y Morfología del Terreno, Polytechnic University of Madrid, 28040 Madrid, Spain 
First page
380
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763263
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728478684
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.