Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

According to the United Nation’s World Water Development Report, by 2050 more than 50% of the world’s population will be under high water scarcity. To avoid water stress, water resources are needed to be managed more securely. Smart water technology (SWT) has evolved for proper management and saving of water resources. Smart water system (SWS) uses sensor, information, and communication technology (ICT) to provide real-time monitoring of data such as pressure, water ow, water quality, moisture, etc. with the capability to detect any abnormalities such as non-revenue water (NRW) losses, water contamination in the water distribution system (WDS). It makes water and energy utilization more efficient in the water treatment plant and agriculture. In addition, the standardization of data format i.e., use of Water Mark UP language 2.0 has made data exchange easier for between different water authorities. This review research exhibits the current state-of-the-art of the on-going SWT along with present challenges and future scope on the mentioned technologies. A conclusion is drawn that smart technologies can lead to better water resource management, which can lead to the reduction of water scarcity worldwide. High implementation cost may act as a barrier to the implementation of SWT in developing countries, whereas data security and its reliability along with system ability to give accurate results are some of the key challenges in its field implementation.

Details

Title
Smart Water Technology for Efficient Water Resource Management: A Review
First page
6268
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2465929413
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.