Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper proposed an innovative predictive maintenance system, designated to monitor and diagnose critical electrical equipment (generally large power electric motors) within industrial electrical installations. A smart and minimally invasive system is designed and developed. Its scope is to evaluate continuously the essential operating parameters (electrical, thermal, and mechanical) of the investigated equipment. It manages to report the deviations of inspected machine operating parameters values from the rated ones. The system also suggests the potential cause of these abnormal variations along with possible means (if the defect is identified in a database, constantly updated with each appearance of a malfunction). The developed maintenance device generates an operating report of the analyzed equipment, in which the values of power quality and energy indicators are computed and interpreted. Additionally, real-time remote transmission of analyzed data is facilitated, making them accessible from any location. The proposed maintenance system is a low-cost device that is easy to install and use in comparison with similar existing devices and equipment. The designed maintenance system was tested on dedicated to low-voltage equipment up to 100 kW.

Details

Title
Smart Predictive Maintenance Device for Critical In-Service Motors
Author
Cazacu, Emil  VIAFID ORCID Logo  ; Lucian-Gabriel Petrescu  VIAFID ORCID Logo  ; Ioniță, Valentin  VIAFID ORCID Logo 
First page
4283
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679735833
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.