Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

After decades of development, LIDAR and visual SLAM technology has relatively matured and been widely used in the military and civil fields. SLAM technology enables the mobile robot to have the abilities of autonomous positioning and mapping, which allows the robot to move in indoor and outdoor scenes where GPS signals are scarce. However, SLAM technology relying only on a single sensor has its limitations. For example, LIDAR SLAM is not suitable for scenes with highly dynamic or sparse features, and visual SLAM has poor robustness in low-texture or dark scenes. However, through the fusion of the two technologies, they have great potential to learn from each other. Therefore, this paper predicts that SLAM technology combining LIDAR and visual sensors, as well as various other sensors, will be the mainstream direction in the future. This paper reviews the development history of SLAM technology, deeply analyzes the hardware information of LIDAR and cameras, and presents some classical open source algorithms and datasets. According to the algorithm adopted by the fusion sensor, the traditional multi-sensor fusion methods based on uncertainty, features, and novel deep learning are introduced in detail. The excellent performance of the multi-sensor fusion method in complex scenes is summarized, and the future development of multi-sensor fusion method is prospected.

Details

Title
SLAM Overview: From Single Sensor to Heterogeneous Fusion
Author
Chen, Weifeng 1   VIAFID ORCID Logo  ; Zhou, Chengjun 2   VIAFID ORCID Logo  ; Shang, Guangtao 2   VIAFID ORCID Logo  ; Wang, Xiyang 2   VIAFID ORCID Logo  ; Li, Zhenxiong 2   VIAFID ORCID Logo  ; Xu, Chonghui 2   VIAFID ORCID Logo  ; Hu, Kai 3   VIAFID ORCID Logo 

 College of Mechanical and Electronic Engineering, Quanzhou University of Information Engineering, Quanzhou 362000, China; School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China 
 School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China 
 School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China; CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China 
First page
6033
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748560794
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.