Full Text

Turn on search term navigation

Copyright © 2015 Björn Kempken et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Uniform, alloyed Cu-In-Zn-S nanoflowers with sizes of 11.5±2.1 nm and 31±5 nm composed of aggregated 4.1 nm and 5.6 nm primary crystallites, respectively, were obtained in a one-pot, heat-up reaction between copper, indium, and zinc acetate with tert-dodecanethiol in the presence of trioctylphosphine oxide. Larger aggregates were obtained by diluting tert-dodecanethiol with oleylamine, which lowered the reactivity of the indium and zinc precursors and led to the formation of copper rich particles. The thermal decomposition of tert-dodecanethiol stabilizing the primary crystallites induced their agglomeration, while the presence of trioctylphosphine oxide on the surface of the nanoflowers provided them with colloidal stability and prevented them from further aggregation.

Details

Title
Size Control of Alloyed Cu-In-Zn-S Nanoflowers
Author
Kempken, Björn; Erdt, Alexandra; Parisi, Jürgen; Kolny-Olesiak, Joanna
Publication year
2015
Publication date
2015
Publisher
John Wiley & Sons, Inc.
ISSN
16874110
e-ISSN
16874129
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1737445494
Copyright
Copyright © 2015 Björn Kempken et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.