Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Power sources supported by lithium-ion battery (LIB) technology has been considered to be the most suitable for public and military use. Battery quality is always a critical issue since electric engines and portable devices use power-consuming algorithms for security. For the practical use of LIBs in public applications, low heat generation, and fast charging are essential requirements, but those features are still unsatisfactory so far. In particular, the slow Li+ intercalation kinetics, lithium plating, and self-heat generation of conventional graphite-anode LIBs under fast-charging conditions are impediments to the use of these batteries by the public demands. The use of silicon-based anodes, which are associated with fast reaction kinetics and rapid Li+ diffusion, has great potential to render LIBs suitable for public use in the near future. In this perspective, the challenges in and future directions for developing silicon-based anode materials for realizing LIBs with fast-charging capability are highlighted.

Details

Title
Silicon Anode: A Perspective on Fast Charging Lithium-Ion Battery
Author
Lee, Jun 1 ; Oh, Gwangeon 2 ; Ho-Young, Jung 3 ; Jang-Yeon Hwang 4 

 Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea 
 Department of Energy Engineering, Hanyang University, Seoul 06407, Republic of Korea 
 Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Republic of Korea 
 Department of Energy Engineering, Hanyang University, Seoul 06407, Republic of Korea; Center for Energy Storage System, Chonnam National University, Gwangju 61186, Republic of Korea 
First page
182
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819450158
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.