It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
People put their opinions or views on various events happening in the society or world. Twitter is one of the best social networking sites where a huge amount of data generates on the daily basis. These data can be used to classify their tweets based on various sentiments attached to them. Numerous technologies are applied to analyse the sentiments of users. Sentiment analysis needs a very efficient method to manage long arrangement data and their drawn-out dependencies. In this paper, we have applied a deep learning technique to perform Twitter sentiment analysis. Simple Neural Network, Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN) methods are applied for the sentiment analysis and their performances are evaluated. The LSTM is the best among all proposed techniques with the highest accuracy of 87%. We have collected a Twitter dataset from Kaggle to perform our experiment. The future improvement of the proposed research should include REST APIs and web crawling-based solutions to get live tweets to perform real-time analytics. We have analysed 1.6 million tweets in our research work.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Professor & Head, Department of Computer Science, AMC Engineering College, Bengaluru, India
2 Professor, Department of CSE, & Registrar, JNTUK, Kakinada, AP, India
3 Professor, Department of CSE, SRKR Engineering College, Bhimavaram, AP,India
4 Associate Professor, Department of Computer Science, AMC Engineering College, Bengaluru, India