Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The importance and relevance of digital-image forensics has attracted researchers to establish different techniques for creating and detecting forgeries. The core category in passive image forgery is copy–move image forgery that affects the originality of image by applying a different transformation. In this paper, a frequency-domain image-manipulation method is presented. The method exploits the localized nature of discrete wavelet transform (DWT) to attain the region of the host image to be manipulated. Both patch and host image are subjected to DWT at the same level l to obtain 3l+1 sub-bands, and each sub-band of the patch is pasted to the identified region in the corresponding sub-band of the host image. Resulting manipulated host sub-bands are then subjected to inverse DWT to obtain the final manipulated host image. The proposed method shows good resistance against detection by two frequency-domain forgery detection methods from the literature. The purpose of this research work is to create a forgery and highlight the need to produce forgery detection methods that are robust against malicious copy–move forgery.

Details

Title
Seamless Copy–Move Replication in Digital Images
Author
Qazi, Tanzeela 1 ; Mushtaq, Ali 1 ; Hayat, Khizar 2   VIAFID ORCID Logo  ; Magnier, Baptiste 3 

 Department of Information Technology, Hazara University Mansehra, Mansehra 21120, Pakistan; [email protected] (T.Q.); [email protected] (M.A.) 
 Department of Mathematical and Physical Sciences (DMPS), College of Arts and Sciences (CAS), University of Nizwa, Nizwa 616, Oman 
 EuroMov Digital Health in Motion, Univ Montpllier, IMT Mines Ales, 30100 Ales, France; [email protected] 
First page
69
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2313433X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642500250
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.