Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In 2019, the machine manufacturer HSM presented a forwarder prototype for timber hauling in cut-to-length processes fitted with a new 10-wheel triple-bogie (TB) setup approach aimed at promoting sustainable forest management by reducing the ecological impact of forest operations, especially under soft-soil working conditions. The purpose of our study was to assess the resulting soil-protection effect emerging from additional wheel-contact surface area. For this, the rut development under known cumulative weight, related to the soil conditions of shear strength and moisture content, was recorded for later comparison. Additional terrestrial laser scanning (TLS) was used to generate a multi-temporal digital terrain model (DTM) in order to enhance the data sample, assess data quality, and facilitate visualization of the impact of local disturbance factors. In all TB configurations, a rut depth of 10 cm (5.8–7.2 cm) was not exceeded after the hauling of a reference amount of 90 m3 of timber (average soil shear strength reference of 67 kPa, volumetric water content (VMC) 43%). Compared to a reference dataset, all observed configurations ranked in the lowest-impact machine categories on related soil stability classes, and the configuration without bogie tracks revealed the highest machine weight to weight distribution trade-off potential.

Details

Title
Rut Depth Evaluation of a Triple-Bogie System for Forwarders—Field Trials with TLS Data Support
Author
Starke, Michael  VIAFID ORCID Logo  ; Derron, Cédric; Heubaum, Felix; Ziesak, Martin
First page
6412
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2434216705
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.