Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A custom-built PEM electrolyzer cell was assembled using 6” stainless-steel ConFlat flanges which were fitted with a RuO2 nanorod-decorated, mixed metal oxide (MMO) ribbon mesh anode catalyst. The current density–voltage characteristics were measured for the RuO2 nanorod electrocatalyst while under constant water feed operation. The electrocatalytic behavior was investigated by making a series of physical modifications to the anode catalyst material. These experiments showed an improved activity due to the RuO2 nanorod electrocatalyst, resulting in a corresponding decrease in the electrochemical overpotential. These overpotentials were identified by collecting experimental data from various electrolyzer cell configurations, resulting in an improved understanding of the enhanced catalytic behavior. The micro-to-nano surface structure of the anode electrocatalyst layer is a critical factor determining the overall operation of the PEM electrolyzer. The improvement was determined to be due to the lowering of the potential barrier to electron escape in an electric field generated in the vicinity of a nanorod.

Details

Title
RuO2 Nanorods as an Electrocatalyst for Proton Exchange Membrane Water Electrolysis
Author
Cross, Michael W 1 ; SmithIII, Richard P 2 ; Varhue, Walter J 3 

 Electrical and Computer Engineering Department, David Crawford School of Engineering, Norwich University, Northfield, VT 05663, USA; [email protected] 
 Mook Sea Farm, Nobleboro, ME 04555, USA; [email protected] 
 Department of Electrical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05401, USA 
First page
1412
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602136172
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.