Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of cracks, owing to a relatively lower tensile strength of concrete, diverse loading, and environmental factors driving the deterioration of structures, is an inescapable key concern for engineers. Reparation and maintenance operations are thus extremely important to prevent cracks from spreading and mitigating the lifetime of structures. However, ease of access to the cracked zone may be challenging, and it also needs funds and manual power. Hence, autonomous sealing of cracks employing microorganisms into the concrete sans manual intervention is a promising solution to the dilemma of the sustainable improvement of concrete. ‘Ureolytic bacteria’, key organism species in rumen-producing ‘urease’ enzymes such as Bacillus pasteurii or subtilis—when induced—are capable of producing calcium carbonate precipitations into the concrete. As their cell wall is anionic, CaCO3 accumulation on their surface is extensive, and the whole cell, therefore, becomes crystalline and ultimately plugs pores and cracks. This natural induction technique is an environmentally friendly method that researchers are studying intensively. This manuscript reviews the application process of bacterial healing to manufacture autonomous self-healing bacterial concrete. Additionally, it provides a brief review of diverse attributes of this novel concrete which demonstrate the variations with the auto-addition of different bacteria, along with an evaluation of crack healing as a result of the addition of these bacteria directly into concrete or after encapsulation in a protective shell. Comparative assessment techniques for autonomous, bio-based self-healing are also discussed, accompanied by progress, potential, modes of application of this technique, and its resultant benefits in the context of strength and durability. Imperatives for quantitative sustainability assessment and industrial adoption are identified, along with the sealing of artificially cracked cement mortar with sand as a filling material in given spaces, as well as urea and CaCl2 medium treatment with Bacillus pasteurii and Sporosarcina bacteria. The assessment of the impact on the compressive strength and rigidity of cement mortar cubes after the addition of bacteria into the mix is also considered. Scanning electron microscope (SEM) images on the function of bacteria in mineral precipitation that is microbiologically induced are also reviewed. Lastly, future research scope and present gaps are recognised and discussed.

Details

Title
A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties
Author
Luhar, Salmabanu 1   VIAFID ORCID Logo  ; Ismail Luhar 2 ; Faiz Uddin Ahmed Shaikh 3   VIAFID ORCID Logo 

 Frederick Research Center, P.O. Box 24729, Nicosia 1303, Cyprus; Department of Civil Engineering, Frederick University, P.O. Box 24729, Nicosia 1036, Cyprus; Center of Excellence Geopolymer and Green Technology, School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia 
 Department of Civil Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Jhunjhunu 333001, India 
 School of Civil and Mechanical Engineering, Curtin University, Perth 6102, Australia; [email protected] 
First page
23
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621307214
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.