Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Photovoltaic (PV) system is an essential part in renewable energy development, which exhibits huge market demand. In comparison with traditional rigid-supported photovoltaic (PV) system, the flexible photovoltaic (PV) system structure is much more vulnerable to wind load. Hence, it is imperative to gain a better understanding of the aerodynamic characteristics and wind-induced response of flexible photovoltaic system. The main objective of this paper is to provide a comprehensive review on the state-of-the-art studies focusing on the aerodynamic characteristics and wind-induced response of flexible PV system. Relevant studies have been carried out, using either physical or numerical simulation tools, and the effect of a series of governing parameters, such as spacing ratio, angle of attack, inclination and position are considered. In addition, dynamic response of these flexible structures, including buffeting, flutter, vortex-induced vibration, are also discussed and documented.

Details

Title
A Review on Aerodynamic Characteristics and Wind-Induced Response of Flexible Support Photovoltaic System
Author
Chen, Fubin 1 ; Zhu, Yuzhe 2 ; Wang, Weijia 2 ; Zhenru Shu 3 ; Li, Yi 2 

 Key Laboratory of Bridge Engineering Safety Control by Department of Education, Changsha University of Science and Technology, Changsha 410114, China; School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China 
 School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China 
 School of Civil Engineering, Central South University, Changsha 410075, China 
First page
731
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2813540993
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.