Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The catalytic conversion of CO2 to CO by the reverse water gas shift (RWGS) reaction followed by well-established synthesis gas conversion technologies could be a practical technique to convert CO2 to valuable chemicals and fuels in industrial settings. For catalyst developers, prevention of side reactions like methanation, low-temperature activity, and selectivity enhancements for the RWGS reaction are crucial concerns. Cerium oxide (ceria, CeO2) has received considerable attention in recent years due to its exceptional physical and chemical properties. This study reviews the use of ceria-supported active metal catalysts in RWGS reaction along with discussing some basic and fundamental features of ceria. The RWGS reaction mechanism, reaction kinetics on supported catalysts, as well as the importance of oxygen vacancies are also explored. Besides, recent advances in CeO2 supported metal catalyst design strategies for increasing CO2 conversion activity and selectivity towards CO are systematically identified, summarized, and assessed to understand the impacts of physicochemical parameters on catalytic performance such as morphologies, nanosize effects, compositions, promotional abilities, metal-support interactions (MSI) and the role of selected synthesis procedures for forming distinct structural morphologies. This brief review may help with future RWGS catalyst design and optimization.

Details

Title
A Review of CeO2 Supported Catalysts for CO2 Reduction to CO through the Reverse Water Gas Shift Reaction
Author
Ebrahimi, Parisa; Kumar, Anand  VIAFID ORCID Logo  ; Khraisheh, Majeda  VIAFID ORCID Logo 
First page
1101
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728451869
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.