Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Photocatalytic overall water splitting in solar–chemical energy conversion can effectively mitigate environmental pollution and resource depletion. Stable ternary metal indium zinc sulfide (ZnIn2S4) is considered one of the ideal materials for photocatalytic overall water splitting due to its unique electronic and optical properties, as well as suitable conduction and valence band positions for suitable photocatalytic overall water splitting, and it has attracted widespread researcher interest. Herein, we first briefly describe the mechanism of photocatalytic overall water splitting, and then introduce the properties of ZnIn2S4 including crystal structure, energy band structure, as well as the main synthetic methods and morphology. Subsequently, we systematically summarize the research progress of ZnIn2S4-based photocatalysts to achieve overall water splitting through modification methods such as defect engineering, heterostructure construction, and co-catalyst loading. Finally, we provide insights into the prospects and challenges for the overall water splitting of ZnIn2S4-based photocatalysts.

Details

Title
Research Progress of ZnIn2S4-Based Catalysts for Photocatalytic Overall Water Splitting
Author
Yan, Yujie 1 ; Chen, Zhouze 1 ; Cheng, Xiaofang 1 ; Shi, Weilong 2   VIAFID ORCID Logo 

 School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 
 School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 
First page
967
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829787760
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.