Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The high dielectric constant ZrO2, as one of the most promising gate dielectric materials for next generation semiconductor device, is expected to be introduced as a new high k dielectric layer to replace the traditional SiO2 gate dielectric. The electrical properties of ZrO2 films prepared by various deposition methods and the main methods to improve their electrical properties are introduced, including doping of nonmetal elements, metal doping design of pseudo-binary alloy system, new stacking structure, coupling with organic materials and utilization of crystalline ZrO2 as well as optimization of low-temperature solution process. The applications of ZrO2 and its composite thin film materials in metal oxide semiconductor field effect transistor (MOSFET) and thin film transistors (TFTs) with low power consumption and high performance are prospected.

Details

Title
Research Progress of High Dielectric Constant Zirconia-Based Materials for Gate Dielectric Application
Author
Xie, Junan  VIAFID ORCID Logo  ; Zhu, Zhennan; Hong, Tao; Zhou, Shangxiong; Liang, Zhihao; Li, Zhihang; Yao, Rihui  VIAFID ORCID Logo  ; Wang, Yiping; Honglong Ning  VIAFID ORCID Logo  ; Peng, Junbiao
First page
698
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2426833037
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.