Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development of the digital economy, the algorithms and big data technologies of e-commerce platforms have gradually turned into double-edged swords. While realising personalised recommendations, they also provide information technology support for the use of algorithmic prices to discriminate and extract residual value from consumers. Consumers frequently use Black Cat and third-party media to complain, resulting in a significant negative impact. Therefore, in order to regulate algorithmic price discrimination, using e-commerce platforms, local governments and consumers act as game subjects, taking an evolutionary game approach. We analyse the impact of different situations and factors on the system’s evolutionary stability strategy and conduct its verification via simulation experiments. This study shows that several measures, such as increasing cooperation with the media; establishing clear regulatory rules to reduce the extent of algorithmic price discrimination and the grey revenue of e-commerce platforms; establishing a long-term mechanism for consumer feedback; improving rewards and punishments to increase the probability of successful regulation and penalties by local governments; sharing information to reduce the cost of consumer regulation; and setting reasonable bonus thresholds based on government revenue and consumer regulation costs, can effectively regulate algorithmic price discrimination and promote the sustainable development of e-commerce platforms.

Details

Title
Research on the Regulation of Algorithmic Price Discrimination Behaviour of E-Commerce Platform Based on Tripartite Evolutionary Game
Author
Li, Jianjun; Xu, Xiaodi  VIAFID ORCID Logo  ; Yang, Yu
First page
8294
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819492615
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.