Full Text

Turn on search term navigation

© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The automatic train operation (ATO) system of urban rail trains includes a two-layer control structure: upper-layer control and lower-layer control. The upper-layer control is to optimize the target speed curve of ATO, and the lower-layer control is the tracking by the urban rail train of the optimal target speed curve generated by the upper-layer control according to the tracking control strategy of ATO. For upper-layer control, the multi-objective model of urban rail train operation is firstly built with energy consumption, comfort, stopping accuracy, and punctuality as optimization indexes, and the entropy weight method is adopted to solve the weight coefficient of each index. Then, genetic algorithm (GA) is used to optimize the model to obtain an optimal target speed curve. In addition, an improved genetic algorithm (IGA) based on directional mutation and gene modification is proposed to improve the convergence speed and optimization effect of the algorithm. The stopping and speed constraints are added into the fitness function in the form of penalty function. For the lower-layer control, the predictive speed controller is designed according to the predictive control principle to track the target speed curve accurately. Since the inflection point area of the target speed curve is difficult to track, the softness factor in the predictive model needs to be adjusted online to improve the control accuracy of the speed. For this paper, we mainly improve the optimization and control algorithms in the upper and lower level controls of ATO. The results show that the speed controller based on predictive control algorithm has better control effect than that based on the PID control algorithm, which can meet the requirements of various performance indexes. Thus, the feasibility of predictive control algorithm in an ATO system is also verified.

Details

Title
Research on Multi-Objective Optimization and Control Algorithms for Automatic Train Operation
Author
Kai-wei, Liu  VIAFID ORCID Logo  ; Xing-Cheng, Wang; Zhi-hui Qu
First page
3842
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2403818651
Copyright
© 2019. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.