Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To further improve the hardness of the laser cladding layer on the surface of the vermicular graphite cast iron, the structural parameters of the laser cladding Co-base were designed and optimized, and the properties of the clad layer were evaluated using optical microscopy (OM), scanning electron microscopy (SEM), energy spectroscopy (EDS), X-ray diffractometer (XRD), electrochemical workstation, and friction wear equipment. The results show that the average hardness of the molten layer of Ni and Co-based composite cladding layer is 504 HV0.5, which is 0.64 times that of the Co-based cladding layer due to the combined factors of Ni-Cr-Fe equivalent to the dilution of the Ni-based cladding layer to the Co-based cladding layer. Due to the potential difference of the Ni, Cr, and Co elements on the surface of the cladding layer, the self-corrosion potential of the Ni and Co-based composite cladding layer is 1.08 times that of the Co-based cladding layer, and the self-corrosion current density is 0.51 times. Laser cladding Co-based cladding layer has high corrosion resistance. Under the influence of plastic deformation and oxidative wear of the cladding layer of the Ni and Co-based composite cladding layer, the wear amount of the cladding layer of the Ni and Co-based composite cladding layer is less.

Details

Title
Research on Laser Cladding Co-Based Alloy on the Surface of Vermicular Graphite Cast Iron
Author
Sun, Fuzhen 1 ; Cai, Keqian 2 ; Li, Xiaoxu 2 ; Pang, Ming 3 

 State Key Laboratory of Advanced Forming Technology and Equipment, China Academy of Machinery Science & Technology, Beijing 100044, China; [email protected] (K.C.); [email protected] (X.L.); School of Mechanical Engineering, University of Science & Technology Beijing, Beijing 100083, China; Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China 
 State Key Laboratory of Advanced Forming Technology and Equipment, China Academy of Machinery Science & Technology, Beijing 100044, China; [email protected] (K.C.); [email protected] (X.L.) 
 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China; [email protected] 
First page
1241
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2584359113
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.