Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A new approach on how to formulate redundancy-free models for mathematical descriptions of three-phase catalytic hydrogenation of cinnamaldehyde is presented. An automatically created redundant (generalized) model is formulated according to the complete reaction network. Models based on formal kinetics and kinetics concerning the Langmuir-Hinshelwood theory for three-phase catalytic hydrogenation of cinnamaldehyde were investigated. Redundancy-free models were obtained as a result of a step-by-step elimination of model parameters using sensitivity and interval analysis. Starting with 24 parameters in the redundant model, the redundancy-free model based on the Langmuir-Hinshelwood mechanism contains 6 parameters, while the model based on formal kinetics includes only 4 parameters. Due to less degrees of freedom of molecular rotation in the adsorbed state, the probability of a direct conversion of cinnamaldehyde to 3-phenylpropanol according to the redundancy-free model based on Langmuir-Hinshelwood approach is practically negligible compared to the model based on formal kinetics.

Details

Title
Redundancy-Free Models for Mathematical Descriptions of Three-Phase Catalytic Hydrogenation of Cinnamaldehyde
First page
207
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2487502096
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.