Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Artificial Intelligence (AI) in the automotive industry allows car manufacturers to produce intelligent and autonomous vehicles through the integration of AI-powered Advanced Driver Assistance Systems (ADAS) and/or Automated Driving Systems (ADS) such as the Traffic Sign Recognition (TSR) system. Existing TSR solutions focus on some categories of signs they recognise. For this reason, a TSR approach encompassing more road sign categories like Warning, Regulatory, Obligatory, and Priority signs is proposed to build an intelligent and real-time system able to analyse, detect, and classify traffic signs into their correct categories. The proposed approach is based on an overview of different Traffic Sign Detection (TSD) and Traffic Sign Classification (TSC) methods, aiming to choose the best ones in terms of accuracy and processing time. Hence, the proposed methodology combines the Haar cascade technique with a deep CNN model classifier. The developed TSC model is trained on the GTSRB dataset and then tested on various categories of road signs. The achieved testing accuracy rate reaches 98.56%. In order to improve the classification performance, we propose a new attention-based deep convolutional neural network. The achieved results are better than those existing in other traffic sign classification studies since the obtained testing accuracy and F1-measure rates achieve, respectively, 99.91% and 99%. The developed TSR system is evaluated and validated on a Raspberry Pi 4 board. Experimental results confirm the reliable performance of the suggested approach.

Details

Title
A Real-Time Traffic Sign Recognition Method Using a New Attention-Based Deep Convolutional Neural Network for Smart Vehicles
Author
Triki, Nesrine 1   VIAFID ORCID Logo  ; Karray, Mohamed 2   VIAFID ORCID Logo  ; Ksantini, Mohamed 1   VIAFID ORCID Logo 

 CEM, Lab ENIS, University of Sfax, Sfax 3038, Tunisia; [email protected] 
 ESME, ESME Research Lab, 94200 Ivry sur Seine, France; [email protected] 
First page
4793
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806477090
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.