Full Text

Turn on search term navigation

© 2021 Karabayev et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by-nc/4.0 (the “License”), which permits using, remixing, and building upon the work non-commercially, as long as it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

High-throughput sequencing platforms generate a massive amount of high-dimensional genomic datasets that are available for analysis. Modern and user-friendly bioinformatics tools for analysis and interpretation of genomics data becomes essential during the analysis of sequencing data. Different standard data types and file formats have been developed to store and analyze sequence and genomics data. Variant Call Format (VCF) is the most widespread genomics file type and standard format containing genomic information and variants of sequenced samples.

Results

Existing tools for processing VCF files don’t usually have an intuitive graphical interface, but instead have just a command-line interface that may be challenging to use for the broader biomedical community interested in genomics data analysis. re-Searcher solves this problem by pre-processing VCF files by chunks to not load RAM of computer. The tool can be used as standalone user-friendly multiplatform GUI application as well as web application (https://nla-lbsb.nu.edu.kz). The software including source code as well as tested VCF files and additional information are publicly available on the GitHub repository (https://github.com/LabBandSB/re-Searcher).

Details

Title
re-Searcher: GUI-based bioinformatics tool for simplified genomics data mining of VCF files
Author
Karabayev, Daniyar; Molkenov, Askhat; Yerulanuly, Kaiyrgali; Ilyas Kabimoldayev; Daniyarov, Asset; Sharip, Aigul; Seisenova, Ainur; Zhumadilov, Zhaxybay; Kairov, Ulykbek
Publication year
2021
Publication date
May 3, 2021
Publisher
PeerJ, Inc.
e-ISSN
21678359
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2521261721
Copyright
© 2021 Karabayev et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by-nc/4.0 (the “License”), which permits using, remixing, and building upon the work non-commercially, as long as it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.