Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Microencapsulation of phase change materials (PCMs) remain a suitable option within building materials, as they contribute to the thermal mass and provide an energy buffer, an added benefit. This paper presents a novel method for the rapid fabrication of microencapsulated phase change materials (PCMs) at ambient conditions in a perfluoroalkoxy (PFA) coiled tube ultraviolet (UV) reactor. The objective of this study was to optimize key parameters such as the product yield and quality of the as-prepared microcapsules. Rubitherm® RT-21™ PCM was microencapsulated within shells of poly-methyl-methacrylate (PMMA) through a suspension emulsion polymerization approach, where the crosslinking of polymers was driven by UV radiations with an appropriate photoinitiator. The characteristics of the resulting PCM microcapsules were found to be affected by the volumetric flow rate of the emulsion inside the coiled tube reactor. Higher volumetric flow rates led to higher PCM contents and higher microencapsulation efficiency, resulting in an average particle size of 6.5 µm. Furthermore, the effect of curing time on the PCM microcapsule properties was investigated. The optimum encapsulation yield, conversion, efficiency and PCM content were observed after 10 min of polymerization time. The thermal analysis indicated that the developed process had an efficiency of 85.8%, and the capsules were characterized with excellent thermal properties. Compared to the conventional thermal microencapsulation processes, the use of a coiled tube UV reactor with an appropriate photoinitiator enables the encapsulation of heat-sensitive PCMs at ambient conditions, and reduces the microencapsulation time dramatically. As a result, this novel microencapsulation approach can lead to a wider scope of PCM encapsulation and enable rapid, continuous and potentially large-scale industrial production of PCM microcapsules with low energy consumption.

Details

Title
A Rapid Method for Low Temperature Microencapsulation of Phase Change Materials (PCMs) Using a Coiled Tube Ultraviolet Reactor
Author
Ansari, Jawaad A 1 ; Al-Shannaq, Refat 1 ; Kurdi, Jamal 2 ; Al-Muhtaseb, Shaheen A 3   VIAFID ORCID Logo  ; Ikutegbe, Charles A 1   VIAFID ORCID Logo  ; Farid, Mohammed M 1   VIAFID ORCID Logo 

 Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; [email protected] (J.A.A.); [email protected] (R.A.-S.); [email protected] (C.A.I.) 
 Engineering Technology-Chemical Processing, College of the North Atlantic-Qatar, Doha P.O. Box 24449, Qatar; [email protected] 
 Department of Chemical Engineering, Qatar University, Doha P.O. Box 2713, Qatar; [email protected] 
First page
7867
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2608131379
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.