Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The proliferation of the internet of things (IoT) technology has led to numerous challenges in various life domains, such as healthcare, smart systems, and mission-critical applications. The most critical issue is the security of IoT nodes, networks, and infrastructures. IoT uses the routing protocol for low-power and lossy networks (RPL) for data communication among the devices. RPL comprises a lightweight core and thus does not support high computation and resource-consuming methods for security implementation. Therefore, both IoT and RPL are vulnerable to security attacks, which are broadly categorized into RPL-specific and sensor-network-inherited attacks. Among the most concerning protocol-specific attacks are rank attacks and wormhole attacks in sensor-network-inherited attack types. They target the RPL resources and components including control messages, repair mechanisms, routing topologies, and sensor network resources by consuming. This leads to the collapse of IoT infrastructure. In this paper, a lightweight multiclass classification-based RPL-specific and sensor-network-inherited attack detection model called MC-MLGBM is proposed. A novel dataset was generated through the construction of various network models to address the unavailability of the required dataset, optimal feature selection to improve model performance, and a light gradient boosting machine-based algorithm optimized for a multiclass classification-based attack detection. The results of extensive experiments are demonstrated through several metrics including confusion matrix, accuracy, precision, and recall. For further performance evaluation and to remove any bias, the multiclass-specific metrics were also used to evaluate the model, including cross-entropy, Cohn’s kappa, and Matthews correlation coefficient, and then compared with benchmark research.

Details

Title
Rank and Wormhole Attack Detection Model for RPL-Based Internet of Things Using Machine Learning
Author
Zahra, F 1 ; Jhanjhi, N Z 1   VIAFID ORCID Logo  ; Sarfraz Nawaz Brohi 2 ; Navid Ali Khan 1 ; Mehedi Masud 3   VIAFID ORCID Logo  ; AlZain, Mohammed A 4   VIAFID ORCID Logo 

 School of Computer Science (SCS), Taylor’s University, Subang Jaya 47500, Malaysia 
 Computer Science and Creative Technologies, University of the West of England, Bristol BS16 1QY, UK 
 Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia 
 Department of Information Technology, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia 
First page
6765
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716584281
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.