It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Improved information on the distribution of seasonal rainfall is important for crop production in Ghana. The predictability of key agro-meteorological indices, namely, seasonal rainfall, maximum dry spell length (MDSL) and dry spell frequency (DSF) was investigated across Ghana (with an interest on the coastal savannah agro-ecological zone). These three variables are relevant for local agricultural water management. A dynamical model (i.e. European Centre for Medium-Range Weather Forecasts (ECMWF) System 4 seasonal forecasts) and a statistical model (i.e. response to sea surface temperatures (SSTs)) were used and analysed using correlation and other discrimination skill metrics. ECMWF-System 4 was bias-corrected and verified with 14 local stations’ observations. Results show that differences in variability and skills of the agro-meteorological indices are small between agro-ecological zones as compared to the differences between stations. The dynamic model System 4 explains up to 31% of the variability of the MDSL and seasonal rainfall indices. Coastal savannah exhibits the highest level of discrimination skills. However, these skills are generally higher for the below and above normal MDSL and seasonal rainfall categories at lead time 0. Similarity in skills for the agro-meteorological indices over the same zones and stations is found both for the dynamical and statistical models. Although System 4 performs slightly better than the statistical model, especially, for dry spell length and seasonal rainfall. For dry spell frequency and longer lead time dry spell length, the statistical model tends to perform better. These results suggest that the agro-meteorological indices derived from System 4′ updated versions, corrected with local observations, together with the response to SST information, can potentially support decision-making of local smallholder farmers in Ghana.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Wageningen University & Research, Water System and Global Change group, Wageningen, Netherlands (GRID:grid.4818.5) (ISNI:0000 0001 0791 5666)
2 University for Development Studies, Tamale, Ghana (GRID:grid.442305.4) (ISNI:0000 0004 0441 5393)