Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aptamers are important materials for the specific determination of different disease-related biomarkers. Several methods have been enhanced to transform selected target molecule-specific aptamer bindings into measurable signals. A number of specific aptamer-based biosensors have been designed for potential applications in clinical diagnostics. Various methods in combination with a wide variety of nano-scale materials have been employed to develop aptamer-based biosensors to further increase sensitivity and detection limit for related target molecules. In this critical review, we highlight the advantages of aptamers as biorecognition elements in biosensors for target biomolecules. In recent years, it has been demonstrated that electrode material plays an important role in obtaining quick, label-free, simple, stable, and sensitive detection in biological analysis using piezoelectric devices. For this reason, we review the recent progress in growth of aptamer-based QCM biosensors for medical diagnoses, including virus, bacteria, cell, protein, and disease biomarker detection.

Details

Title
Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis
Author
Akgönüllü, Semra  VIAFID ORCID Logo  ; Erdoğan Özgür; Denizli, Adil  VIAFID ORCID Logo 
First page
1441
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716558645
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.