Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The design of a post-tensioned transfer plate is typically controlled by shear force—in particular, punching shear at the slab-column connection. To verify the accuracy of the separated model only for one floor currently used in the design of a post-tensioned transfer plate, results were compared to a complete model with multi-story building system for which two representative residential building plans were used to emulate physical structural systems. Punching shear stress for the separated model was calculated using the eccentric shear stress model presented in ACI 318. Punching shear stress was found to be overestimated in the separated model, given that interaction between transfer plates and upper shear walls cannot be reflected therein. Differences at column locations were also noted as the number of stories below the transfer floor increased. Consequently, the separated model is not recommended for design of post-tensioned transfer plates. A complete model is more suitable for more realistic and potential cost-effective design, through the inclusion of the interaction between transfer plates and upper shear walls.

Details

Title
Punching Shear Stress in Post-Tensioned Transfer Plate of Multi-Story Buildings
Author
Ahn, Byeonguk; Kang, Thomas H-K; Su-Min, Kang; Yoon, Jang Keun
First page
6015
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2440314587
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.