It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Code-switching (CS) refers to the phenomenon of using more than one language in an utterance, and it presents great challenge to automatic speech recognition (ASR) due to the code-switching property in one utterance, the pronunciation variation phenomenon of the embedding language words and the heavy training data sparse problem. This paper focuses on the Mandarin-English CS ASR task. We aim at dealing with the pronunciation variation and alleviating the sparse problem of code-switches by using pronunciation augmentation methods. An English-to-Mandarin mix-language phone mapping approach is first proposed to obtain a language-universal CS lexicon. Based on this lexicon, an acoustic data-driven lexicon learning framework is further proposed to learn new pronunciations to cover the accents, mis-pronunciations, or pronunciation variations of those embedding English words. Experiments are performed on real CS ASR tasks. Effectiveness of the proposed methods are examined on all of the conventional, hybrid, and the recent end-to-end speech recognition systems. Experimental results show that both the learned phone mapping and augmented pronunciations can significantly improve the performance of code-switching speech recognition.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Shanghai Normal University, SHNU-Unisound Joint Laboratory of Natural Human-Computer Interaction, Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai, China (GRID:grid.412531.0) (ISNI:0000 0001 0701 1077)
2 Unisound AI Technology Co., Ltd., Beijing, China (GRID:grid.412531.0)