Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The waterproof and thermal insulation property of foamed concrete is very important. In this study, the ultrafine fly ash (UFA)-based superhydrophobic composite coating was applied onto foam concrete. The UFA-based base coating that closely adhered to the concrete initially improved the waterproofness of the test block, and the silane coupling agent-modified UFA-based surface coating further achieved superhydrophobicity. The UFA on the coating surface and the asperities on the surface jointly formed a lotus leaf-like rough micro–nanostructure. The 154.34° water drop contact angle and 2.41° sliding angle on No. 5 coating were reached, indicating that it was a superhydrophobic surface. The water absorption ratios of the composite coating block were 1.87% and 16.6% at 4 h and 7 days, which were reduced by 97% and 75% in comparison with the original foam concrete. The compressive strength and heat conductivity coefficient after soaking for 4 h of the composite coating block were higher than 4.0 MPa and 0.225 W·m−1·K−1, respectively. The UFA-based superhydrophobic composite coating proposed in this study and applied onto foam concrete is simple and cheap, requires no precise instrument, and can be applied in a large area.

Details

Title
Preparation of Ultrafine Fly Ash-Based Superhydrophobic Composite Coating and Its Application to Foam Concrete
Author
Tang, Mingxiu; Xu, Lei; Feng, Zhengjun; Cheng, Fangqin
First page
2187
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550317070
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.