Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sludge Volume Index (SVI) is one of the most important operational parameters in an activated sludge process. It is difficult to predict SVI because of the nonlinearity of data and variability operation conditions. With complex time-series data from Wastewater Treatment Plants (WWTPs), the Recurrent Neural Network (RNN) with an Explainable Artificial Intelligence was applied to predict SVI and interpret the prediction result. RNN architecture has been proven to efficiently handle time-series and non-uniformity data. Moreover, due to the complexity of the model, the newly Explainable Artificial Intelligence concept was used to interpret the result. Data were collected from the Nine Springs Wastewater Treatment Plant, Madison, Wisconsin, and the data were analyzed and cleaned using Python program and data analytics approaches. An RNN model predicted SVI accurately after training with historical big data collected at the Nine Spring WWTP. The Explainable Artificial Intelligence (AI) analysis was able to determine which input parameters affected higher SVI most. The prediction of SVI will benefit WWTPs to establish corrective measures to maintaining stable SVI. The SVI prediction model and Explainable Artificial Intelligence method will help the wastewater treatment sector to improve operational performance, system management, and process reliability.

Details

Title
Prediction of Sludge Volume Index in a Wastewater Treatment Plant Using Recurrent Neural Network
Author
Wongburi, Praewa 1   VIAFID ORCID Logo  ; Park, Jae K 2 

 Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand 
 Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] 
First page
6276
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670462367
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.