Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Predicting the frost depth of soils in pavement design is critical to the sustainability of the pavement because of its mechanical vulnerability to frozen-thawed soil. The reliable prediction of frost depth can be challenging due to the high uncertainty of frost depth and the unavailability of geotechnical properties needed to use the available empirical- and analytical-based equations in literature. Therefore, this study proposed a new framework to predict the frost depth of soil below the pavement using eight machine learning (ML) algorithms (five single ML algorithms and three ensemble learning algorithms) without geotechnical properties. Among eight ML models, the hyperparameter-tuned gradient boosting model showed the best performance with the coefficient of determination (R2) = 0.919. Furthermore, it was also shown that the developed ML model can be utilized in the prediction of several levels of frost depth and assessing the sensitivity of pavement-related predictors for predicting the frost depth of soils.

Details

Title
Predicting Frost Depth of Soils in South Korea Using Machine Learning Techniques
Author
Hyun-Jun, Choi 1   VIAFID ORCID Logo  ; Kim, Sewon 2 ; Kim, YoungSeok 1 ; Jongmuk Won 3 

 Northern Infrastructure Specialized Team, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea 
 Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea 
 Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 44610, Korea 
First page
9767
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700779749
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.