Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study used nanofluidic protein posttranslational modification (PTM) profiling to measure the effects of six cannabidiol (CBD) oils and isolated CBD on the signaling pathways of a cultured SH-SY5Y neuronal cell line. Chemical composition analysis revealed that all CBD oils met the label claims and legal regulatory limit regarding the CBD and tetrahydrocannabinol (THC) contents, respectively. Isolated CBD was cytotoxic, with an effective concentration (EC50) of 40 µM. In contrast, the CBD oils had no effect on cell viability at CBD concentrations exceeding 1.2 mM. Interestingly, only an unadulterated CBD oil had strong and statistically significant suppressive effects on the pI3K/Akt/mTOR signaling pathway with an EC50 value of 143 µM and a slow-acting timescale requiring hours. Systematic profiling of twenty-six proteins, which served as biomarkers for nine signaling pathways, revealed that the unadulterated CBD oil downregulated seven signaling pathways but had no measurable effect on the other two signaling pathways. The remaining CBD oils, which were adulterated, and isolated CBD had weak, variable, or undetectable effects on neuronal signaling pathways. Our data clearly showed that adulteration diminished the biological activities of CBD oils. In addition, nanofluidic protein PTM profiling provided a robust means for potency assessment of CBD oils.

Details

Title
Potency Assessment of CBD Oils by Their Effects on Cell Signaling Pathways
Author
Urasaki, Yasuyo; Beaumont, Cody; Workman, Michelle; Talbot, Jeffery N  VIAFID ORCID Logo  ; Hill, David K; Le, Thuc T  VIAFID ORCID Logo 
First page
357
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20726643
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2395028635
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.