Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Concurrent developments in anticancer nanotechnological treatments have been observed as the burden of cancer increases every year. The 21st century has seen a transformation in the study of medicine thanks to the advancement in the field of material science and nanomedicine. Improved drug delivery systems with proven efficacy and fewer side effects have been made possible. Nanoformulations with varied functions are being created using lipids, polymers, and inorganic and peptide-based nanomedicines. Therefore, thorough knowledge of these intelligent nanomedicines is crucial for developing very promising drug delivery systems. Polymeric micelles are often simple to make and have high solubilization characteristics; as a result, they seem to be a promising alternative to other nanosystems. Even though recent studies have provided an overview of polymeric micelles, here we included a discussion on the “intelligent” drug delivery from these systems. We also summarized the state-of-the-art and the most recent developments of polymeric micellar systems with respect to cancer treatments. Additionally, we gave significant attention to the clinical translation potential of polymeric micellar systems in the treatment of various cancers.

Details

Title
Polymeric Micellar Systems—A Special Emphasis on “Smart” Drug Delivery
Author
Negut, Irina 1   VIAFID ORCID Logo  ; Bogdan Bita 2   VIAFID ORCID Logo 

 National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania 
 National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania; Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania 
First page
976
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791700523
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.