Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Zhangxuan district in North China, also known as Northwestern Hebei “Golden Triangle,” develops many intrusion-hosted lode-gold deposits. The Dongping gold deposit in the Zhangxuan district is well known for its unique hosting of rocks and ore mineral assemblages. Magnetite and pyrite are common minerals that widely exist in ores of the Dongping deposit. To get a better understanding of the evolution of the ore-forming fluids responsible for mineralization, we report on an integrated study on the electron microprobe analysis (EMPA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis of magnetite and pyrite from the deposit. The major results are as follows: The magnetite grains from the Dongping deposit show a variable content of major and trace elements such as Ti, Al, Si, Fe, Mn, Cr, Na, V, and Co, and the majority of the magnetite contain low Ti contents, revealing potential properties of hydrothermal magnetite. The flat time-resolved signals of LA-ICP-MS imply that the majority of trace elements in magnetite exist in the form of isomorphism, except for some incompatible trace elements. Magnetites from the Dongping deposit have compositional characteristics of hydrothermal origins, and the genetic discriminant diagrams of Ti–V, Ti–Ni/Cr or (Ca + Al + Mn)–(Ti + V) show that they may be originated from magma differentiated hydrothermal solutions. Co, Ni in pyrite from Dongping mainly enter the lattice via isomorphism, and Cu, Zn, Ag, W, Sn, Au, Pb, and Bi are partitioned into pyrite as micro/nano- mineral inclusions. The Co, Ni content, and the Ni/Co ratios, indicated that the temperature of the ore-forming fluids has decreased from Py-1 to Py-2, and the enrichment of Au in Py-2 may be related to the cooling and boiling of the fluids.

Details

Title
Ore Genesis of the Dongping Gold Deposit in the Northern Margin of North China Craton: Constraints from In-Situ Major, Trace Elemental Analysis of Magnetite and Pyrite
Author
Wang, Chengyang 1 ; Yu, Jiajia 2 ; Ren, Yunsheng 3 ; Zhao, Junkang 4 ; Sun, Zhenjun 3 

 MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; [email protected]; School of Earth Sciences, Institute of Disaster Prevention, Sanhe 065201, China; [email protected] (Y.R.); [email protected] (Z.S.); Hebei Key Laboratory of Earthquake Dynamics, Sanhe 065201, China 
 MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; [email protected] 
 School of Earth Sciences, Institute of Disaster Prevention, Sanhe 065201, China; [email protected] (Y.R.); [email protected] (Z.S.); Hebei Key Laboratory of Earthquake Dynamics, Sanhe 065201, China 
 Institute of Geological Exploration, Zijin Mining Group Co., Ltd., Xiamen 361006, China; [email protected] 
First page
978
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706278119
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.