Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object detection in unmanned aerial vehicle (UAV) images is an extremely challenging task and involves problems such as multi-scale objects, a high proportion of small objects, and high overlap between objects. To address these issues, first, we design a Vectorized Intersection Over Union (VIOU) loss based on YOLOv5s. This loss uses the width and height of the bounding box as a vector to construct a cosine function that corresponds to the size of the box and the aspect ratio and directly compares the center point value of the box to improve the accuracy of the bounding box regression. Second, we propose a Progressive Feature Fusion Network (PFFN) that addresses the issue of insufficient semantic extraction of shallow features by Panet. This allows each node of the network to fuse semantic information from deep layers with features from the current layer, thus significantly improving the detection ability of small objects in multi-scale scenes. Finally, we propose an Asymmetric Decoupled (AD) head, which separates the classification network from the regression network and improves the classification and regression capabilities of the network. Our proposed method results in significant improvements on two benchmark datasets compared to YOLOv5s. On the VisDrone 2019 dataset, the performance increased by 9.7% from 34.9% to 44.6%, and on the DOTA dataset, the performance increased by 2.1%.

Details

Title
Object Detection for UAV Aerial Scenarios Based on Vectorized IOU
Author
Lu, Shun 1 ; Lu, Hanyu 2 ; Dong, Jun 3   VIAFID ORCID Logo  ; Wu, Shuang 4 

 College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China 
 College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; Bijie 5G Innovation and Application Research Institute, Guizhou University of Engineering Science, Bijie 551700, China 
 Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Anhui Zhongke Deji Intelligence Technology Co., Ltd., Hefei 230045, China 
 Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 
First page
3061
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791740137
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.